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We identify and characterize the a settling
(Youdin & Goodman 2005) that can occur in protoplanetary disk.
into the midplane region. The growth rate of the settling instability is independent of grain Sie

and comparable to the disk orbital frequency for realistic parameters, suggesting that the instabulity RESO N ANT DR AG INSTAB I LITY arXiv:1706.05020

15 relevant for even the smallest grains. In addition, its characteristic wavelengths are larger than

those of the streaming instability, potentially allowing the instability to concentrate large masses of An algorithm to find instabilities in coupled dust dust-gas mixtures
solids.  These properties suggest that in the process of settling, small grains could band into rings
(then filaments or clumps) with significantly higher than background metallicity. This could have a 1) Work out equilibrium: drift Velocity (Ws), oas properties
variety of important consequences for the early stages of planetesimal formation, for instance, by
enhancing coagulation rates of small grains and/or creating high-metallicity regions in the 2) Choose 2 oS Wave, with frequency Wpave ( k)
muidplane that act to seed the standard streaming instability. 0 .
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COUPLED GAS+DUST EQUATIONS IN A LOCAL PATCH OF DISK
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Growth rate w = iy/pu — 1, slower (but larger scales) for large grains
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Possible IMPLICATIONS  For smaller grains, growth time much shorter than settling time
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